Combining neural network model with seasonal time series ARIMA model

نویسندگان

  • Fang-Mei Tseng
  • Hsiao-Cheng Yu
  • Gwo-Hsiung Tzeng
  • Hsuan Chuang
چکیده

This paper proposes a hybrid forecasting model, which combines the seasonal time series ARIMA (SARIMA) and the neural network back propagation (BP) models, known as SARIMABP. This model was used to forecast two seasonal time series data of total production value for Taiwan machinery industry and the soft drink time series. The forecasting performance was compared among four models, i.e., the SARIMABP and SARIMA models and the two neural network models with differenced and deseasonalized data, respectively. Among these methods, the mean square error (MSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE) of the SARIMABP model were the lowest. The SARIMABP model was also able to forecast certain significant turning points of the test time series. D 2002 Elsevier Science Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

A Three-phase Hybrid Times Series Modeling Framework for Improved Hospital Inventory Demand Forecast

Background and Objectives: Efficient cost management in hospitals’ pharmaceutical inventories have the potential to remarkably contribute to optimization of overall hospital expenditures. To this end, reliable forecasting models for accurate prediction of future pharmaceutical demands are instrumental. While the linear methods are frequently used for forecasting purposes chiefly due to their si...

متن کامل

Forecasting Time Series Data Using Hybrid Grey Relational Artificial Neural Network and Auto Regressive Integrated Moving Average Model

In business, industry and government agencies, anticipating future behavior that involves many critical variables for nation wealth creation is vitally important, thus the necessity to make precise decision by the policy makers is really essential. Consequently, an accurate and reliable forecast system is needed to compose such predictions. Accordingly, the aim of this research is to develop a ...

متن کامل

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

Performance Evaluation of ARIMA Hybrid Models in the Prediction of Daily Electrical Conductivity (A Case Study of Telazang Hydrometric Station)

In this study, we used the ARIMA time series model, the fuzzy-neural inference network, multi-layer perceptron artificial neural network, and ARIMA-ANN, ARIMA-ANFIS hybrid models for the modeling and prediction of the daily electrical conductivity parameter of daily teleZang hydrometric station over the statistical period of 49 years. For this purpose, the daily data for the 1996-2004 period we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001